Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating.

نویسندگان

  • K J Tielrooij
  • L Piatkowski
  • M Massicotte
  • A Woessner
  • Q Ma
  • Y Lee
  • K S Myhro
  • C N Lau
  • P Jarillo-Herrero
  • N F van Hulst
  • F H L Koppens
چکیده

Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies have addressed the general operation of graphene-based photothermoelectric devices and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster timescale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 fs. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 fs laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity of between 500 and 1,500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast collinear scattering and carrier multiplication in graphene.

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigate...

متن کامل

Hot carrier-assisted intrinsic photoresponse in graphene.

We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse...

متن کامل

Competing ultrafast energy relaxation pathways in photoexcited graphene.

For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the domina...

متن کامل

Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.

Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By ...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2015